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Abstract

Stem cells are currently one of the most researched and explored subject in science. They consstitue 
a very promising part of regenerative medicine and have many potential clinical applications. Harness-
ing their ability to replicate and differentiate into many cell types can enable successful treatment of 
diseases that were incurable until now. There are numerous types of stem cells (e.g. ESCs, FSCs, ASCs, 
iPSCs) and many different methods of deriving and cultivating them in order to obtain viable materi-
al. The eye is one of the most interesting targets for stem cell therapies. In this article we summarise 
different aspects of stem cells, discussing their characteristics, sources and methods of culture. We 
also demonstrate the most recent clinical applications in ophthalmology based on an extensive current 
literature review. Tissue engineering techniques developed for corneal limbal stem cell deficiency, 
age-related macular degeneration (AMD) and glaucoma are among those presented. Both laboratory 
and clinical aspects of stem cells are discussed.
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Introduction
Stem cells present multiple potential applications in re-

generative medicine and are the subject of intense research 
[1]. The eye is a fascinating and promising target for stem 
cell therapies because it is a relatively immunologically 
privileged and surgically accessible self-contained system. 
Many ocular diseases such as corneal limbal stem cell de-
ficiency, age-related macular degeneration (AMD), glau-
coma, or retinal dystrophies could be treated with the use 
of tissue engineering. 

In this article, the authors summarise different aspects 
of stem cell therapy, discussing the nature of stem cells, 
their sources and culture, and presenting the most recent 
clinical applications in ophthalmology as well as potential 
uses in future.

Classification 
Stem cells are defined by their ability to regenerate 

multiple differentiated cell types, while retaining the ca-
pacity to self-replicate (Simonovitch et al. 1963). Those 
found in vivo have different origin and can be divided into 
3 broad categories accordingly: embryonic (ESCs), foetal 
(FSCs) and adult stem cells (ASCs, among them mesen-
chymal stem cells – MSCs). Embryonic cells are plurip-

otent, derived from the inner cell mass of the blastocyst,  
a stage of the pre-implantation embryo, 5-6 days post-fer-
tilization [2]. They generate the organism, whereas the 
surrounding trophoblast cells contribute to the placental 
chorion. FSCs are multipotent cells located in the foetal 
tissues and embryonic annexes [3]. They have been sub-
divided into haematopoietic (blood, liver, bone marrow), 
mesenchymal (blood, liver, bone marrow, lung, kidney and 
pancreas), endothelial (bone marrow, placenta), epithelial 
(liver, pancreas) and neural ones (brain, spinal cord) [4]. 
Among FSCs the greatest potential use in regenerative 
medicine have stem cells found in foetal blood and in 
placenta because they are the easiest to harvest without 
harming the foetus. ASCs are multipotent tissue-resident 
stem cells, also termed progenitor cells, found in fully de-
veloped tissues. They reside in niches that create a special 
microenvironment for their replication and self-renewal. 

Very important for regenerative medicine are cell’s plas-
ticity and ability to undergo the process of transdifferenti-
ation. These two refer to the ability of some cells to give 
rise to cell types, formerly considered outside their normal 
repertoire of differentiation for the location where they are 
found [5]. Plasticity is the capacity of organisms or cells 
to alter their phenotype in response to changes in their en-
vironment [6]. Transdifferentiation is the transformation of  
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a non-stem cell into a different cell type or the production of 
cells from a differentiated stem cell that are not related to its 
already established differentiation path [7].

The discovery of those processes broadened the pos-
sibilities to derive stem cells from tissues. Takahashi and 
Yamanaka proved in 2006 that to reprogram a differen-
tiated cell into an embryonic-like state it is enough to 
introduce certain transcription factors into culture condi-
tions [8]. Their research showed that the use of retroviral 
transduction enables somatic cell reprogramming into stem 
cells without the need of transferring their nuclear contents 
into oocytes or fusing them with embryonic stem cells. 
Cells derived by this new method are called induced plu-
ripotent stem cells (iPSCs; Fig. 1). 

Since 2006 the strategies for deriving iPSCs are con-
stantly being improved. DNA-free and viral-free protocols 
have been presented using recombinant proteins, messen-
ger RNA (mRNA) and mature microRNA (miRNA) [13-
15]. There has been also first attempt of in vivo reprogram-
ming which showed that it is possible to produce totipotent 
iPSCs within tissues, but the technique needs major refine-

Table 1. Human embryonic stem cell (hESCs) markers [19]

hESCs markers

SSEA3, SSEA4 glycolipid antigens

TRA-1-60, TRA-1-81, GCTM2, GCT343 keratan sulfate 
antigens

CD9, Thy1 (CD90), tissue-nonspecific 
alkaline phosphatase, class 1 HLA

protein antigens

NANOG, POU5F1 (formerly known as 
OCT4), TDGF1, DNMT3B, GABRB3, 
GDF3

strongly 
developmentally 
regulated genes

Table 2. Criteria for MSCs – cell surface antigens

Express Not express

CD90, CD105, CD73 CD45, CD34, CD14, CD11b, 
CD79α, CD19, HLA-DRFig. 1. Different stem cells: based on their differentiation 

potential stem cells can be described as totipotent, plurip-
otent, mulitipotent, oligopotent or unipotent [9]. Totipotent 
stem cells derive from an early progeny of the zygote up 
to the eight cell stage of the morula and have the ability 
to form an entire organism and the extraembryonic mem-
branes [10, 11]. Pluripotent cells can differentiate into 
tissue from all 3 germ layers (endoderm, mesoderm, and 
ectoderm). Multipotent stem cells may differentiate into 
tissue derived from a single germ layer such as mesen-
chymal stem cells which form adipose tissue, bone, and 
cartilage. Oligopotent stem cells, also called tissue-resi-
dent stem cells, can form terminally differentiated cells of 
a specific tissue [12]. Unipotent stem cells form a single 
lineage (ex. spermatogonial stem cells) [1] 

Stem cells e.g.

Totipotent (zygote)

 ESC (embryonal)
Pluripotent 
 iPSC (induced)

 FSC (fetal)
Mulitipotent
 ASC (adult) → e.g. MSC
  (mesenchymal stem cells)

Oligopotent 

 LSC (limbal stem cells)
Unipotent
  TM  (trabecular meshwork stem 

cells)

ment before it can be used in regenerative medicine as it 
resulted in teratomas formation so far [16].

 Stem cells markers
Molecular biomarkers are used to classify and isolate 

stem cells and to monitor their differentiation state by anti-
body-based techniques. The expression of certain cell surface 
antigens is evidence for the cell’s potency. However, because 
stem cells are heterogeneous in morphology, phenotype, and 
function, they need to be classified into subpopulations char-
acterised by multiple sets of molecular biomarkers [17]. 

Human ESCs (hESCs) have flat compact colony mor-
phology. Their growth depends on FGF and TGFb sig-
nalling. In 2007, the International Stem Cell Initiative 
characterised 59 hESCs lines from 17 laboratories world-
wide [18]. Although the lines were not identical, presented 
various genotypes and were derived and maintained using 
different techniques, it was observed that they all exhibited 
similar expression patterns for several markers of human 
embryonic stem cells (Table 1).

Human iPSCs (hiPSCs) share all key features with 
human ESCs (hESCs), however there are some concerns 
about their molecular and functional equivalence discussed 
later in this article. 

Adult tissue-derived stem cells (ASCs), such as mes-
enchymal stem cells (MSCs usually derived from bone 
marrow or fat but also many other tissues [20]) are among 
the most studied and some are currently being used in the 
clinic. In 2006, the International Society for Cellular Ther-
apy (ISCT) produced a position statement suggesting the 
minimum criteria required to define MSCs [21]. They must 
be plastic adherent, differentiate into osteoblasts, adipo-
cytes, and chondroblasts in vitro and present appropriate 
cell surface antigens expression (Table 2).
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A particular challenge for the field has been the ab-
sence of any specific marker to define MSCs, although 
a large number of different determinants have been asso-
ciated with them but not exclusively. In vitro characteri-
sation of MSC profiles of surface molecule expression is 
complicated by the fact that the culture conditions may 
introduce experimental artefacts. It has been proposed that 
certain natively expressed surface markers are modified 
following explantation, while new markers may be ac-
quired [22]. 

Problems with different stem cell sources
Although there are various stem cell sources available, 

there are also many controversies and doubts as to their 
application in regenerative medicine. For example, embry-
onic stem cells (ESCs) have been shown to increase the 
risk for tumour formation [23]. In addition, their culture is 
a demanding task, which requires continuous maintenance 
of the undifferentiated state for long periods of time. Their 
stability during extended passaging cannot be guaranteed, 
and recent cytogenetic studies have shown karyotypic ab-
errations [24]. Because ESCs are genetically different from 
the recipient’s cells they have the potential to generate im-
munological response and rejection, thereby creating the 
need for immunosuppressive therapy. Finally, there are 
many ethical issues and concerns surrounding their pro-
curement from embryos. Thus, there are only about 300 
NIH registry-approved human embryonic stem cell lines, 
which represents only 0.00001% of the world’s human ge-
netic diversity (7 billion people). New methods of deriving 
ESCs are investigated, among them parthenogenetic ESCs 
[25-27] or removal of a single blastomere from a moru-
la stage embryo (embryo biopsy) [28, 29], but still more 
research is needed to consider them as safe and effective 
protocols.

Foetal stem cells are less ethically contentious than ESCs 
and their differentiation potential appears greater than adult 
stem cells [30]. They can be harvested from foetal blood and 
liver without harming the foetus. Some research show that 
they do not elicit alloreactive lymphocyte proliferation [31].

Adult tissue-derived stem cells usually are less tumou-
rogenic than their embryonic counterparts and provide an 
autologous source of cells eliminating concerns regarding 
rejection and disease transmission [32]. However, their do-
nordependency, limited expansion potential and a highly 
restricted differentiation capacity are serious disadvantages 
[33]. When considering ASCs as a source of stem cells 
for regenerative therapies it must be noted that harvesting 
them from tissues may present some technical problems 
(e.g. bone marrow stem cells – painful procedure, risk of 
infection). To acquire an appropriate amount of MSCs, to 
culture them maintaining their pluripotent characteristics 
and then to transplant them within tissues in vivo is a chal-
lenge, because the number and quality of MSCs derived 

depends on the type of tissue used as a source, but also on 
age and sex of the donor [34-36].

With iPSCs there are also many well-known technical 
problems that remain unresolved. Reprogramming adult 
cells to the embryonic stage is time consuming and re-
quires special conditions and procedures that are not yet 
well established. The risk of acquiring somatic mutations 
and chromosomal rearrangements during the induction of 
pluripotency and reports of genetic and epigenetic varia-
tion between iPSC lines that were derived using identical 
methods are difficult issues to address [37]. The question 
of whether iPSCs are genuine copies of the cells that ex-
ist in vivo arises. Recent research shows that iPSCs may 
be significantly different from the cells found in tissues 
because they retain residual DNA methylation patterns 
typical of parental somatic cells [38, 39]. However, there 
are also more and more reports on effective methods of 
deriving footprint-free iPSCs [40-42].

Clinical application – the eye

Limbal stem cells deficiency 

The cornea is a complex, multi-layered, multifunction-
al, transparent structure in the anterior segment of an eye 
that provides photo protection, refraction, and transparen-
cy and helps protect internal ocular structures [43]. It is 
composed of various layers, the outermost of which is the 
epithelium. Its stem cells are found only in the palisades of 
Vogt located on the periphery of the cornea, in the region 
known as the limbus. Thus, they are called limbal stem 
cells (LSCs). The limbal epithelium consists of three cell 
types: stem cells, transient amplifying cells (TACs) that 
migrate to the central cornea devoid of stem cells to regen-
erate it, and differentiated cells. Isolating a pure population 
of stem cells from the palisades of Vogt is difficult [44]. 

Although LSCs have been the subject of research for 
many decades, no definitive marker has been identified so 
far [45]. They may be characterised as small active prim-
itive cells that are p63, ABCG2, and integrin α9 positive 
and nestin, E-cadherin, connexin 43, involucrin, K3, and 
K12 negative, while they have a relatively higher expres-
sion of integrin β1, EGFR, K19, and enolase-α [46-48]. 
However, there are researchers who point out that the use 
of some of these markers makes it impossible to isolate 
and characterise live LSCs because the cells have to be 
permeabilised, which results in loss of cell viability. Thus, 
the use of RHAMM/HMMR as a negative LSCs marker 
for successful clinical isolation has been suggested [49]. 
Many other markers of LSCs are still being investigated.

If the limbus is damaged, for example as a result of 
a chemical burn, limbal stem cells deficiency occurs 
(LSCD) and the cornea loses its transparency which re-
sults in blindness. If the LSCD is unilateral the autolo-
gous transplantation of limbal tissue from the uninjured 
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eye may be performed [50]. Nevertheless, the procedure 
carries a risk of inducing LSCD in the donor eye due to 
the need of large limbal biopsy, necessitating the ex vivo 
expansion of LSCs as an alternative [51, 52]. It was shown 
that upon transplantation cultured autologous LSCs perma-
nently restored corneal transparency of patients with ocular 
burns [53].

New sources of LSCs and the ways of their ex vivo 
expansion are constantly being investigated [54]. Hayashi 
et al. generated corneal epithelial cells from human iPSCs 
by method called stromal cell-derived inducing activity 
(SDIA) [55]. Ouyang et al. using exogenous expression 
of PAX6 reprogrammed epidermal cells into LSC-like 
cells that were able to repair damaged corneal surface on 
rabbit corneal injury model [56]. They did it with a new 
feeder-cell-free LSCs expansion protocol. Reports from 
Mikhailova et al. presented direct differentiation method 
for iPSs toward corneal epithelial progenitor cells capable 
of terminal differentiation to mature corneal epithelial-like 
cells using 2 small-molecule inhibitors in combination 
with basic fibroblast growth factor (bFGF) in serum-free 
and feeder-free conditions [57]. Another protocol pro-
posed by Zhao included the use of amniotic membranes 
as a niche for LSCs ex vivo proliferation [58]. Autologous 
oral mucosal epithelium graft with amniotic membrane 
transplantation was also proved as a viable alternative to 
restore corneal surfaces suffering from total limbal stem 
cell deficiency [59].

Glaucoma

Glaucoma is a neuropathy of the optic nerve and one 
of the major causes of blindness in the world population. 
Although its aetiology is multifactoral and not yet fully un-
derstood, it is known that the visual impairment is a result 
of the damage to the retinal ganglion cells (RGCs). These 
are cells located in the innermost layers of the retina and 
their axons form optic nerve. 

Through tissue-engineering techniques various types of 
stem cells have been found to be a potential source of RGCs 
for optic nerve regeneration. Stepwise, documented differ-
entiation of RGCs through all of the major stages of ret-
inogenesis is crucial for determining whether cells derived 
in vitro from ESCs [60], ASCs, or iPSCs are truly RGCs. 
Appropriate physiological activity should be proven as well. 

Initially, RGC differentiation is triggered by fibroblast 
growth factors FGF3 and FGF8 released by organising 
centres in the optic stalk and neural retina [61]. First the 
axon’s formation is initiated, and then dendrites start to 
occur [62]. Commonly identified markers for RGCs are 
Brn3, Islet1, and Pax6, but they are not specific for RGCs 
only [63]. Thus, identifying RGCs especially derived from 
other sources than the retina itself requires also checking 
their morphological and physiological features. Morpho-
logically RGCs possess a very elongated axon and a sig-

nificant number of dendritic extensions. Several protocols 
have been reported for RGCs differentiation [64, 65].

A very interesting source of RGCs can be Müller stem 
cells derived from retina. They can be harvested from 
a donor post-mortem and expanded in vitro as showed 
Limb et al. by creating an immortalized Müller cell line 
(MIO-M1) [66]. Cells from this line have been later trans-
planted into a glaucomatous rat model and expressed both 
neuronal and glial cell markers [67]. In another rat model, 
RGC precursors from the donor neural retina have been 
transplanted onto the inner retinal surface of rats depleted 
of RGCs where they integrated into tissues and continued 
expressing RGC’s markers in vivo [68]. These experiments 
demonstrated that Müller stem cells can become oriented 
toward the optic nerve in vivo and potentially restore RGC 
function in glaucomatous eyes.

Among other ASCs used in optic nerve regeneration 
are oligodendrocyte precursor cells (OPCs) and olfactory 
ensheathing cells (OECs). In glaucoma there is a loss of 
oligodendrocytes which may play a role in the pathogen-
esis and progression of the disease [69]. Oligodendrocyte 
precursor cells posses the ability to migrate, proliferate, 
and differentiate into mature oligodendrocytes and en-
sheath demyelinated axons in animal models [70]. By pro-
ducing IGF-1 and GDNF they also enhance the survival of 
neurons in vitro and in vivo [71, 72]. OECs transplanted 
into the host eye not only secrete neurotrophic factors stim-
ulating the survival of RGCs but also migrate and integrate 
into the optic nerve and promote growth of RGCs [73-75].

Another research shows that ESCs injected into epiret-
inal space of mouse eye also efficiently integrate into the 
RGC layer and INL and they exhibit neuroprotective fea-
tures over existing neurons [76]. 

When it comes to iPSCs they were shown to differen-
tiate into RGC-like cells by introducing the transcription 
factors Dkk1 + Noggin (DN) + DAPT and overexpression 
of Math5 [77]. However, they were not able to be integrat-
ed into the normal retina after transplantation. 

Retinal ganglion cell depletion is very often associated 
with increased intraocular pressure. Thus many researchers 
focus on regenerating trabecular meshwork (TM) which is 
a structure responsible for regulating the outflow of aque-
ous fluid from the anterior chamber of the eye and con-
trolling intraocular pressure. 

Du et al. extracted stem cells from trabecular meshwork 
and proved their capability of differentiating into cells ex-
pressing TM markers and exhibiting phagocytic function 
[78]. The cells were then transplanted into aqueous fluid 
and migrated to trabecular meshwork renewing TM cells 
population within it [79]. Also Tay et al. successfully prop-
agated in vitro MSC cells derived from TM [80]. Manuguer-
ra-Gagne et al. showed that bone marrow-derived mouse 
MSC mediate regeneration of damaged TM in vivo, appar-
ently through production of paracrine factors [81]. Abu-has-
san et al. differentiated human iPSCs into TM-like cells, 
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that upon transplantation restored partially IOP homeostasis 
in an ex vivo human TM cell loss model, by introduction 
of TM cell-derived extra cellular matrix (ECM) and TM 
cell-derived conditioned media in culture [82]. Ding et al. 
also derived TM-like cells by coculturing of mouse iPSCs 
with primary human TM [83]. 

Age-related macular degeneration
Age-related macular degeneration (AMD) is a major 

cause of blindness in older population. It is a pathology 
which leads to retinal pigmented epithelium cells (RPE) 
atrophy and loss of photoreceptors in macular region of 
the eye. Advanced AMD, including neovascular (wet) type 
and geographic atrophy (dry type), is associated with sub-
stantial, progressive visual impairment. Current treatment 
for wet AMD incorporates intra ocular injections of an-
ti-VEGF agents, occasionally combined with other meth-
ods. There is no efficient treatment for geographic atrophy 
known. For both types of AMD regenerative medicine 
could contribute successful therapeutic methods.

It has been demonstrated that healthy autologous RPE 
transplanted to macular region (using different techniques) 
in an early stage of AMD could partially restore vision 
[84-88]. However, because of the major drawbacks of 
these methods, such as high rate of complications and 
difficulties in collecting the number of RPE large enough 
to adequately repopulate macula, they did not contribute  
a satisfactory therapeutic option so far.

Several defined protocols were conducted to generate 
mature RPE cells from ESCs. Kawasaki et al. used cocul-
ture of ESCs with PA6 stromal cells acquiring cells ex-
pressing markers of mature RPE: ZO-1, RPE65, CRALBP, 
and MerTK [89]. The protocol resembled the natural gen-
eration of RPE cells and avoided the potential contamina-
tions from recombinant proteins or small molecules which 
were used in other protocols but was characterized by low 
efficiency.

Other researchers investigated deriving RPE cells us-
ing mouse embryonic fibroblast cells as the feeder layer for 
hESCs and hiPSCs but it was shown that animal-derived 
components may cause unwanted immunogenicity of the 
generated cells because they carry factors such as sialic 
acid or Neu5Gc [90, 91]. As an alternative Vaajasaari et 
al. and Zhang et al. proposed xeno-free protocols [92, 93].

RPE cells obtained through protocols presented by 
Meyer et al. [94] and Park et al. [95] were later tested 
for treatment of AMD and Stargard’s disease [96]. Also 
Schwartz [97] et al. is investigating safety and tolerability 
of subretinal injection of hESC RPE cell suspensions.

Growing an eye

Most recent researches show promising advances in 
applying tissue engineering methods in attempts to grow 
a whole organ in vitro from stem cells. Hayashi et al. pre-

sented a method of creating SEAM (self-formed ectoder-
mal autonomous multi-zone) of ocular cells which mim-
ics whole-eye development [98]. Human iPS cells were 
cultivated in differentiation medium in which they spon-
taneously and progressively formed a primordium com-
prising four identifiable concentric zones. Cell location 
within different zones was indicative of lineage, spanning 
the ocular surface ectoderm, lens, neuro-retina, and retinal 
pigment epithelium.

Conclusions
Stem cells provide a variety of potential cures for many 

diseases as it can be illustrated on the example of an eye. 
There are many sources they can be derived from and 
currently different methods of cultivating and using those 
cells in regenerative medicine are being investigated. Stem 
cells contribute a promising treatment in the future.

The authors declare no conflict of interest.
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